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UNIT-5 
 

Reinforcement Learning: Single State Case: K-Armed Bandit, Elements of Reinforcement learning, 
Model based Learning, Temporal Difference learning, Generalizing from examples. [TB-1] 
 

In reinforcement learning, the learner is a decision-making agent that takes actions in an 
environment and receives reward (or penalty) for its actions in trying to solve a problem. After a set of 
trial-anderror runs, it should learn the best policy, which is the sequence of actions that maximize the 
total reward. Reinforcement learning (RL) is a general framework where agents learn to perform actions 
in an environment so as to maximize a reward. The two main components are the environment, which 
represents the problem to be solved, and the agent, which represents the learning algorithm. 

Reinforcement Learning is a feedback-based Machine learning technique in which an agent learns 
to behave in an environment by performing the actions and seeing the results of actions. For each good 
action, the agent gets positive feedback, and for each bad action, the agent gets negative feedback 
or penalty. 
  In Reinforcement Learning, the agent learns automatically using feedbacks without any labeled 
data, unlike supervised learning. Since there is no labeled data, so the agent is bound to learn by its 
experience only. RL solves a specific type of problem where decision making is sequential, and the goal 
is long-term, such as game-playing, robotics, etc. 
  The agent interacts with the environment and explores it by itself. The primary goal of an agent in 
reinforcement learning is to improve the performance by getting the maximum positive rewards. 
 
Types of Reinforcement learning 
There are mainly two types of reinforcement learning, which are: 
o Positive Reinforcement 
o Negative Reinforcement 
Positive Reinforcement: 
The positive reinforcement learning means adding something to increase the tendency that expected 
behavior would occur again. It impacts positively on the behavior of the agent and increases the strength 
of the behavior. This type of reinforcement can sustain the changes for a long time, but too much positive 
reinforcement may lead to an overload of states that can reduce the consequences. 
Negative Reinforcement: 
The negative reinforcement learning is opposite to the positive reinforcement as it increases the 
tendency that the specific behavior will occur again by avoiding the negative condition. It can be more 
effective than the positive reinforcement depending on situation and behavior, but it provides 
reinforcement only to meet minimum behavior. 

 

https://www.javatpoint.com/supervised-machine-learning
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INTRODUCTION: - 

Let us say we want to build a machine that learns to play chess. In this case we cannot use a 
supervised learner for two reasons. First, it is very costly to have a teacher that will take us through 
many games and indicate us the best move for each position. Second, in many cases, there is no such 
thing as the best move; the goodness of a move depends on the moves that follow. A single move does 
not count; a sequence of moves is good if after playing them we win the game. The only feedback is at the 
end of the game when we win or lose the game. 

Another example is a robot that is placed in a maze. The robot can move in one of the four 
compass directions and should make a sequence of movements to reach the exit. As long as the robot is 
in the maze, there is no feedback and the robot tries many moves until it reaches the exit and only then 
does it get a reward. In this case there is no opponent, but we can have a preference for shorter 
trajectories, implying that in this case we play against time. 

These two applications have a number of points in common: there is a decision maker, called the 
agent that is placed in an environment (see figure 18.1). In chess, the game-player is the decision maker 
and the environment is the board; in the second case, the maze is the environment of the robot. At any 
time, the environment is in a certain state that is one of a set of possible states—for example, the state of 
the board, the position of the robot in the maze. The decision maker has a set of actions possible: legal 
movement of pieces on the chess board, movement of the robot in possible directions without hitting the 
walls, and so forth. Once an action is chosen and taken, the state changes. The solution to the task 
requires a sequence of actions, and we get feedback, in the form of a reward rarely, generally only when 
the complete sequence is carried out. The reward defines the problem and is necessary if we want a 
learning agent. The learning agent learns the best sequence of actions to solve a problem where “best” is 
quantified as the sequence of actions that has the maximum cumulative reward. Such is the setting of 
reinforcement learning. 

 
Reinforcement learning is different from the learning methods we discussed before in a number 

of respects. It is called “learning with a critic,” as opposed to learning with a teacher which we have in 
supervised learning. A critic differs from a teacher in that it does not tell us what to do but only how well 
we have been doing in the past; the critic never informs in advance. The feedback from the critic is 
scarce and when it comes, it comes late. This leads to the credit assignment problem. After taking several 
actions and getting the reward, we would like to assess the individual actions we did in the past and find 
the moves that led us to win the reward so that we can record and recall them later on. As we see 
shortly, what a reinforcement learning program does is that it learns to generate an internal value for 
the intermediate states or actions in terms of how good they are in leading us to the goal and getting us 
to the real reward. Once such an internal reward mechanism is learned, the agent can just take the local 
actions to maximize it. 
 
SINGLE STATE CASE: K-ARMED BANDIT 

We start with a simple example. The K-armed bandit is a hypothetical slot machine with K levers. 
The action is to choose and pull one of the levers, and we win a certain amount of money that is the 
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reward associated with the lever (action). The task is to decide which lever to pull to maximize the 
reward. This is a classification problem where we choose one of K. If this were supervised learning, then 
the teacher would tell us the correct class, namely, the lever leading to maximum earning. In this case of 
reinforcement learning, we can only try different levers and keep track of the best. This is a simplified 
reinforcement learning problem because there is only one state, or one slot machine, and we need only 
decide on the action. Another reason why this is simplified is that we immediately get a reward after a 
single action; the reward is not delayed, so we immediately see the value of our action. 

Let us say Q(a) is the value of action a. Initially, Q(a) = 0 for all a. When we try action a, we get 
reward ra ≥ 0. If rewards are deterministic, we always get the same ra for any pull of a and in such a case, 
we can just set Q(a) = ra. If we want to exploit, once we find an action a such that Q(a) > 0, we can keep 
choosing it and get ra at each pull. However, it is quite possible that there is another lever with a higher 
reward, so we need to explore.  

We can choose different actions and store Q(a) for all a. Whenever we want to exploit, we can 
choose the action with the maximum value, that is, 

 
If rewards are not deterministic but stochastic, we get a different reward each time we choose the 

same action. The amount of the reward is defined by the probability distribution p(r|a). In such a case, 
we define Qt(a) as the estimate of the value of action a at time t. It is an average of all rewards received 
when action a was chosen before time t. An online update can be defined as 

 
where rt+1(a) is the reward received after taking action a at time (t +1)st time. 
 

Note that equation 18.2 is the delta rule: η is the learning factor, rt+1 is the desired output, and Qt 
(a) is the current prediction. Qt+1(a) is the expected value of action a at time t + 1 and converges to the 
mean of p(r|a) as t increases. 

The full reinforcement learning problem generalizes this simple case in a number of ways. First, 
we have several states. This corresponds to having several slot machines with different reward 
probabilities, p(r|si, aj), and we need to learn Q(si, aj), which is the value of taking action aj when in state 
si. Second, the actions affect not only the reward but also the next state, and we move from one state to 
another. Third, the rewards are delayed and we need to be able to estimate immediate values from 
delayed rewards. 
 
ELEMENTS OF REINFORCEMENT LEARNING: - 
There are four main elements of Reinforcement Learning, which are given below: 

• Policy 
• Reward Signal 
• Value Function 
• Model of the environment 

 
1. Policy: - 

A policy can be defined as a way how an agent behaves at a given time. It maps the perceived states 
of the environment to the actions taken on those states. A policy is the core element of the RL as it 
alone can define the behavior of the agent. In some cases, it may be a simple function or a lookup 
table, whereas, for other cases, it may involve general computation as a search process. It could be 
deterministic or a stochastic policy: 
For deterministic policy: a = π(s) 



PVP Siddhartha Institute of Technology, Department of IT                                                           Page 4 of 13 
 

For stochastic policy: π(a | s) = P[At =a | St = s] 
 

2. Reward Signal: - 
The goal of reinforcement learning is defined by the reward signal. At each state, the environment 
sends an immediate signal to the learning agent, and this signal is known as a reward signal. These 
rewards are given according to the good and bad actions taken by the agent. The agent's main 
objective is to maximize the total number of rewards for good actions. The reward signal can change 
the policy, such as if an action selected by the agent leads to low reward, then the policy may change 
to select other actions in the future. 
 

3. Value Function: The value function gives information about how well the situation and action are 
and how much reward an agent can expect. A reward indicates the immediate signal for each good 
and bad action, whereas a value function specifies the good state and action for the future. The value 
function depends on the reward as, without reward, there could be no value. The goal of estimating 
values is to achieve more rewards. 
 

4. Model: The last element of reinforcement learning is the model, which mimics the behavior of the 
environment. With the help of the model, one can make inferences about how the environment will 
behave. Such as, if a state and an action are given, then a model can predict the next state and reward. 
The model is used for planning, which means it provides a way to take a course of action by 

considering all future situations before actually experiencing those situations. The approaches for 

solving the RL problems with the help of the model are termed as the model-based approach. 

Comparatively, an approach without using a model is called a model-free approach. 

The learning decision maker is called the agent. The agent interacts with the environment that 
includes everything outside the agent. The agent has sensors to decide on its state in the environment 
and takes an action that modifies its state. When the agent takes an action, the environment provides a 
reward. Time is discrete as t = 0, 1, 2,..., and st ∈ S denotes the state of the agent at time t where S is the 
set of all possible states. at ∈ A(st) denotes the action that the agent takes at time t where A(st) is the set 

of possible actions in state st. When the agent in state st takes the action at, the clock ticks, reward rt+1 ∈ 
R is received, and the agent moves to the next state, st+1. The problem is modeled using a Markov 

decision process (MDP). The reward and next state are sampled from their respective probability 
distributions, p(rt+1|st, at) and P(st+1|st, at). Note that what we have is a Markov system where the state 
and reward in the next time step depend only on the current state and action. In some applications, 
reward and next state are deterministic, and for a certain state and action taken, there is one possible 
reward value and next state. 

Markov Decision Process or MDP, is used to formalize the reinforcement learning 
problems. If the environment is completely observable, then its dynamic can be modeled as a Markov 
Process. In MDP, the agent constantly interacts with the environment and performs actions; at each 
action, the environment responds and generates a new state. 
MDP contains a tuple of four elements (S, A, Pa, Ra): 
A set of finite States S 

 A set of finite Actions A 
 Rewards received after transitioning from state S to state S', due to action a. 
 Probability Pa. 

MDP uses Markov property, and to better understand the MDP,  
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Markov Property: 
It says that "If the agent is present in the current state S1, performs an action a1 and move to the state 
s2, then the state transition from s1 to s2 only depends on the current state and future action and states 
do not depend on past actions, rewards, or states." 

OR 
 in other words, as per Markov Property, the current state transition does not depend on any past action 
or state. Hence, MDP is an RL problem that satisfies the Markov property. Such as in a Chess game, the 
players only focus on the current state and do not need to remember past actions or states. 

Depending on the application, a certain state may be designated as the initial state and in some 
applications, there is also an absorbing terminal (goal) state where the search ends; all actions in this 
terminal state transition to itself with probability 1 and without any reward. The sequence of actions 
from the start to the terminal state is an episode, or a trial. 
The policy, π, defines the agent’s behavior and is a mapping from the states of the environment to 
actions: π: S→A. The policy defines the action to be taken in any state st: at = π(st). The value of a policy π, 
Vπ(st), is the expected cumulative reward that will be received while the agent follows the policy, 
starting from state st. 

In the finite-horizon or episodic model, the agent tries to maximize the expected reward for the 
next T steps: 

 
Certain tasks are continuing, and there is no prior fixed limit to the episode. In the infinite-

horizon model, there is no sequence limit, but future rewards are discounted: 

 
where 0 ≤ γ < 1 is the discount rate to keep the return finite. If γ = 0, then only the immediate reward 
counts. As γ approaches 1, rewards further in the future count more, and we say that the agent becomes 
more farsighted. γ is less than 1 because there generally is a time limit to the sequence of actions needed 
to solve the task. The agent may be a robot that runs on a battery. We prefer rewards sooner rather than 
later because we are not certain how long we will survive. 
For each policy π, there is a Vπ(st), and we want to find the optimal policy π∗ such that 
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Bellman’s equation: - 

To each possible next state st+1, we move with probability P(st+1|st, at), and continuing from there 
using the optimal policy, the expected cumulative reward is V∗(st+1). We sum over all such possible next 
states, and we discount it because it is one time step later. Adding our immediate expected reward, we 
get the total expected cumulative reward for action at. We then choose the best of possible actions. 
Equation 18.6 is known as Bellman’s equation. Similarly, we can also write  

 

 

 
This means that if we have the Q∗(st, at) values, then by using a greedy search at each local step 

we get the optimal sequence of steps that maximizes the cumulative reward. 
 
MODEL-BASED LEARNING: - 

We start with model-based learning where we completely know the environment model 
parameters, p(rt+1|st, at) and P(st+1|st, at). In such a case, we do not need any exploration and can directly 
solve for the optimal value function and policy using dynamic programming. The optimal value function 
is unique and is the solution to the simultaneous equations given in equation 18.6. Once we have the 
optimal value function, the optimal policy is to choose the action that maximizes the value in the next 
state: 

 
1. Value Iteration: - 

To find the optimal policy, we can use the optimal value function, and there is an iterative algorithm 
called value iteration that has been shown to converge to the correct V∗ values. Its pseudo code is 
given in figure 18.2 
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We say that the values converged if the maximum value difference between two iterations is less 
than a certain threshold δ: 

 
where l is the iteration counter. Because we care only about the actions with the maximum value, it is 
possible that the policy converges to the optimal one even before the values converge to their 
optimal values. Each iteration is O(|S|2|A|), but frequently there is only a small number k < |S| of next 
possible states, so complexity decreases to O(k|S||A|). 
 

2. Policy Iteration: - 
In policy iteration, we store and update the policy rather than doing this indirectly over the values. 
The pseudo code is given in figure 18.3. 

 

 
The idea is to start with a policy and improve it repeatedly until there is no change. The value 
function can be calculated by solving for the linear equations. We then check whether we can 
improve the policy by taking these into account. This step is guaranteed to improve the policy, and 
when no improvement is possible, the policy is guaranteed to be optimal. Each iteration of this 
algorithm takes O(|A||S|2 + |S|3) time that is more than that of value iteration, but policy iteration 
needs fewer iterations than value iteration. 

 
TEMPORAL DIFFERENCE LEARNING: - 

Model is defined by the reward and next state probability distributions, and as we saw in section 
18.4, when we know these, we can solve for the optimal policy using dynamic programming. However, 
these methods are costly, and we seldom have such perfect knowledge of the environment. 
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The more interesting and realistic application of reinforcement learning is when we do not have the 
model. This requires exploration of the environment to query the model. When we explore and get to see 
the value of the next state and reward, we use this information to update the value of the current state. 
These algorithms are called temporal difference algorithms because what we do is look at the difference 
between our current estimate of the value of a state (or a state-action pair) and the discounted value of 
the next state and the reward received. 
1. Exploration Strategies 
2. Deterministic Rewards and Actions 
3. Nondeterministic Rewards and Actions 
4. Eligibility Traces 
 
1. Exploration Strategies: - 

To explore, one possibility is to use ε -greedy search where with probability ε, we choose one 
action uniformly randomly among all possible actions, namely, explore, and with probability 1 − ε, 
we choose the best action, namely, exploit. We do not want to continue exploring indefinitely but 
start exploiting once we do enough exploration; for this, we start with a high ε value and gradually 
decrease it. We need to make sure that our policy is soft, that is, the probability of choosing any 

action a ∈ A in state s ∈ S is greater than 0. 

We can choose probabilistically, using the softmax function to convert values to probabilities 

 
and then sample according to these probabilities. To gradually move from exploration to 
exploitation, we can use a “temperature” variable T and define the probability of choosing action a as 

 
When T is large, all probabilities are equal and we have exploration. When T is small, better 

actions are favored. So the strategy is to start with a large T and decrease it gradually, a procedure 
named annealing, which in this case moves from exploration to exploitation smoothly in time. 
 

2. Deterministic Rewards and Actions: - 
In model-free learning, we first discuss the simpler deterministic case, where at any state-action 

pair, there is a single reward and next state possible. In this case, equation 18.7  

 
reduces to  

 
and we simply use this as an assignment to update Q(st, at ). When in state st, we choose action at by 
one of the stochastic strategies we saw earlier, which returns a reward rt+1 and takes us to state st+1. 
We then update the value of previous action as 
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3. Nondeterministic Rewards and Actions: - 
If the rewards and the result of actions are not deterministic, then we have a probability 

distribution for the reward p(rt+1|st, at) from which rewards are sampled, and there is a probability 
distribution for the next state P(st+1|st, at). These help us model the uncertainty in the system that 
may be due to forces we cannot control in the environment: for instance, our opponent in chess, the 
dice in backgammon, or our lack of knowledge of the system. For example, we may have an imperfect 
robot which sometimes fails to go in the intended direction and deviates, or advances shorter or 
longer than expected. 
In such a case, we have 

 
 
Q learning algorithm (off – policy method): - 

We cannot do a direct assignment in this case because for the same state and action, we may 
receive different rewards or move to different next states. What we do is keep a running average. 
This is known as the Q learning algorithm:  

 

 
The pseudo code of the Q learning algorithm is given in figure 18.5. 
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We can also think of equation 18.15 as reducing the difference between the current Q value and 

the backed-up estimate, from one time step later. Such algorithms are called temporal difference 
(TD) algorithms. 
 
On-policy method(Sarsa algorithm): - 

SARSA stands for State Action Reward State action, which is an on-policy temporal difference 
learning method. The on-policy control method selects the action for each state while learning using 
a specific policy. The goal of SARSA is to calculate the Q π (s, a) for the selected current policy π and 
all pairs of (s-a). The main difference between Q-learning and SARSA algorithms is that unlike Q-
learning, the maximum reward for the next state is not required for updating the Q-value in the table. 

In SARSA, new action and reward are selected using the same policy, which has determined the 
original action. The SARSA is named because it uses the quintuple Q(s, a, r, s', a'). Where, 
 s: original state 
 a: Original action 
 r: reward observed while following the states 
 s' and a': New state, action pair. 

This is an off-policy method as the value of the best next action is used without using the policy. 
In an on-policy method, the policy is used to determine also the next action. The on-policy version of 
Q learning is the Sarsa algorithm whose pseudo code is given in figure 18.6. 

 

 
We see that instead of looking for all possible next actions aʹ and choosing the best, the on-policy 

Sarsa uses the policy derived from Q values to choose one next action aʹ and uses its Q value to 
calculate the temporal difference. On-policy methods estimate the value of a policy while using it to 
take actions. In off-policy methods, these are separated, and the policy used to generate behavior, 
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called the behavior policy, may in fact be different from the policy that is evaluated and improved, 
called the estimation policy. 

The same idea of temporal difference can also be used to learn V (s) values, instead of Q(s, a). TD 
learning uses the following update rule to update a state value: 

 
This again is the delta rule where rt+1+γV(st+1) is the better, later prediction and V(st) is the 

current estimate. Their difference is the temporal difference, and the update is done to decrease this 
difference. The update factor η is gradually decreased, and TD is guaranteed to converge to the 
optimal value function V∗(s). 
 

4. Eligibility Traces: - 
The previous algorithms are one-step—that is, the temporal difference is used to update only the 

previous value (of the state or state-action pair). An eligibility trace is a record of the occurrence of 
past visits that enables us to implement temporal credit assignment, allowing us to update the values 
of previously occurring visits as well. We discuss how this is done with Sarsa to learn Q values; 
adapting this to learn V values is straightforward. 

To store the eligibility trace, we require an additional memory variable associated with each 
state-action pair, e(s, a), initialized to 0. When the state-action pair (s, a) is visited, namely, when we 
take action a in state s, its eligibility is set to 1; the eligibilities of all other state-action pairs are 
multiplied by γλ. 0 ≤ λ ≤ 1 is the trace decay parameter. 

 
We remember that in Sarsa, the temporal error at time t is 

 
In Sarsa with an eligibility trace, named Sarsa(λ), all state-action pairs are updated as  

 
 
Sarsa(λ) algorithm: - 

In online updating, all eligible values are updated immediately after each step; in offline updating, 
the updates are accumulated and a single update is done at the end of the episode. Online updating 
takes more time but converges faster. The pseudo code for Sarsa(λ) is given in figure 18.8. Q(λ) and 
TD(λ) algorithms can similarly be derived 
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GENERALIZATION: - 

Until now, we assumed that the Q(s, a) values (or V (s), if we are estimating values of states) are 
stored in a lookup table, and the algorithms we considered earlier are called tabular algorithms. There 
are a number of problems with this approach:  
1. When the number of states and the number of actions is large, the size of the table may become quite 

large. 
2. States and actions may be continuous, for example, turning the steering wheel by a certain angle, and 

to use a table, they should be discretized which may cause error. 
3. When the search space is large, too many episodes may be needed to fill in all the entries of the table 

with acceptable accuracy. 
Instead of storing the Q values as they are, we can consider this a regression problem. This is a 
supervised learning problem where we define a regressor Q(s, a|θ), taking s and a as inputs and 
parameterized by a vector of parameters, θ, to learn Q values. For example, this can be an artificial 
neural network with s and a as its inputs, one output, and θ its connection weights. 
To be able to train the regressor, we need a training set. In the case of Sarsa(0), we saw before that we 
would like Q(st, at) to get close to rt+1+γQ(st+1,at+1). So, we can form a set of training samples where the 
input is the state-action pair (st, at) and the required output is rt+1+γQ(st+1,at+1). We can write the 
squared error as 

 
Training sets can similarly be defined for Q(0) and TD(0), where in the latter case we learn V (s), and the 
required output is rt+1− γV (st+1). Once such a set is ready, we can use any supervised learning algorithm 
for learning the training set. 
If we are using a gradient-descent method, as in training neural networks, the parameter vector is 
updated as 

 
This is a one-step update. In the case of Sarsa(λ), the eligibility trace is also taken into account: 

 
where the temporal difference error is 
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and the vector of eligibilities of parameters are updated as 

 
with e0 all zeros. In the case of a tabular algorithm, the eligibilities are stored for the state-action pairs 
because they are the parameters (stored as a table). In the case of an estimator, eligibility is associated 
with the parameters of the estimator. We also note that this is very similar to the momentum method for 
stabilizing back propagation. The difference is that in the case of momentum previous weight changes 
are remembered, whereas here previous gradient vectors are remembered. Depending on the model 
used for Q(st, at), for example, a neural network, we plug its gradient vector in equation 18.23. 
 
UNIT WISE IMPORTANT QUESTIONS: - 
1. What is Reinforcement Learning? Explain K-Armed Bandit. 
2. Discuss on Elements of Reinforcement learning 
3. Identify an example of a reinforcement learning application that can be modeled by a POMDP. Define 

the states, actions, observations, and reward. 
4. Explain Value iteration algorithm for model-based learning 
5. Explain Policy iteration algorithm for model-based learning 
6. Identify different Algorithms in Temporal Difference Learning 
7. Explain Deterministic Rewards and Actions 
8. Explain Non Deterministic Rewards and Actions 
9. Explain Q learning off-policy temporal difference algorithm. 
10. Explain Sarsa algorithm an on-policy version of Q learning 
11. Outline the concept of `Generalizing from examples. 
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